Abstract

In science courses in general, but especially in first year chemistry classes, the amount of content that is delivered is often overwhelming and too complex for the student to easily cope with. Students not only have to gain knowledge in a variety of different field, they also have to learn new laboratory skills and analytical techniques. Additionally, there is an issue with more and more information being available to everybody through the internet, while our education often still focusses on delivering that knowledge, rather than exploring ways how students can be guided to understanding and using the knowledge provided. There have been different approaches on how to make ‘dry’ scientific concepts more interesting and how enhance student engagement, ranging from problem-based learning approaches, case studies or flipped classroom models. We have recently turned a fairly classic first year chemistry course on its head. In the new structure, students are gaining knowledge and understanding purely through the completion of a range of challenges. We have removed all lectures, tutorials and the final exam, and all interaction with the student happens in the laboratory. Throughout the semester, students attempt to complete a range of challenges, both theoretical and practical, find relevant information, propose approaches to solving the challenges, and discuss these and subsequent outcomes with academic staff. In order to analyse the design, we have conducted structured interviews with students from 2016-2018. Initial assessment of the data suggests a high level of engagement of the students, paired with a better preparation of students for their subsequent studies. Students enjoyed having the freedom to choose and design their own experiments. Additionally, students improved significantly in non-content related aspects such as time-management, organisation, planning and self-learning, with notable impact on their learning in higher years.

Share

COinS