Year

2022

Degree Name

Doctor of Philosophy

Department

Intelligent Polymer Research Institute

Abstract

Since the advent of Tissue Engineering (TE) in the late 1980’s, significant progress has been made within the biomedical landscape. A recently established branch within TE is biofabrication, a field that aims to automate the fabrication of biologically functional materials through the use of additive manufacturing or three-dimensional (3D) printing, among other techniques. Additive manufacturing offers fine control over part porosity, with the capacity to match the complex internal architecture of human bone. Coupled with clinical 3D scanning techniques, 3D printing has the capacity to generate implants that accurately match defected areas. However, due to the limited number of regulatory approved devices for human implantation and high cost of sophisticated powder bed fusion printers, the printing techniques are restricted.

To be compatible with regulatory requirements, this work aims to utilise a widely accessible and regulatory approved device, high-density polyethylene (HDPE) to generate bone substitutes. HDPE in the form of StarPore® supplied by industry collaborator Anatomics Pty Ltd, a three-pronged star or trilobal shape, is an established material approved by both the Federal Drug Administration (FDA) in the United States of America and the Therapeutic Goods Administration (TGA) in Australia as a bone substitute for human implantation.

FoR codes (2008)

0303 MACROMOLECULAR AND MATERIALS CHEMISTRY, 0601 BIOCHEMISTRY AND CELL BIOLOGY, 0903 BIOMEDICAL ENGINEERING, 0912 MATERIALS ENGINEERING

Share

COinS
 

Unless otherwise indicated, the views expressed in this thesis are those of the author and do not necessarily represent the views of the University of Wollongong.