Year

2021

Degree Name

Doctor of Philosophy

Department

School of Electrical, Computer and Telecommunications Engineering

Abstract

Three-dimensional (3D) shape measurement for object surface reconstruction has potential applications in many areas, such as security, manufacturing and entertainment. As an effective non-contact technique for 3D shape measurements, fringe projection profilometry (FPP) has attracted significant research interests because of its high measurement speed, high measurement accuracy and ease to implement. Conventional FPP analysis approaches are applicable to the calculation of phase differences for static objects. However, 3D shape measurement for dynamic objects remains a challenging task, although they are highly demanded in many applications.

The study of this thesis work aims to enhance the measurement accuracy of the FPP techniques for the 3D shape of objects subject to movement in the 3D space. The 3D movement of objects changes not only the position of the object but also the height information with respect to the measurement system, resulting in motion-induced errors with the use of existing FPP technology. The thesis presents the work conducted for solutions of this challenging problem.

FoR codes (2008)

0906 ELECTRICAL AND ELECTRONIC ENGINEERING

Share

COinS
 

Unless otherwise indicated, the views expressed in this thesis are those of the author and do not necessarily represent the views of the University of Wollongong.