Effect of the element ratio in the doping component on the properties of 0.975(0.8Bi1/2Na1/2TiO3–0.2Bi1/2K1/2TiO3)–0.025Bix/3Mgy/3Nbz/3O3 ceramics
Publication Name
Journal of Materials Research
Abstract
A new series of ternary perovskite 0.975(0.8Bi Na TiO –0.2Bi K TiO )–0.025Bi Mg Nb O (BNT–BKT–BMN, BMN‐xyz) ceramics were designed and synthesized. The effect of the element ratio in the doping component BMN on the strain, ferroelectric, piezoelectric, and dielectric properties of the BNT–BKT matrix were studied. The BMN‐430 composition without Nb element exhibits the typical features of non‐ergodic relaxor, which is characterized by a higher piezoelectric coefficient d and a butterfly‐shaped strain curve with negative strain. The introduction of trace Nb can significantly enhance the ergodicity of the system, reflecting in the high positive strain response and strain coefficient (d33∗>750pm/V) of BMN‐321 composition. In contrast, there is no significant difference in the properties between the presence and absence of Mg element. The temperature‐dependent electrical behaviors of BMN‐xyz ceramics were analyzed based on impedance spectroscopy. This study may be helpful to the design of the chemical modification strategy for the BNT‐based relaxor ferroelectrics. [Figure not available: see fulltext.] 1/2 1/2 3 1/2 1/2 3 x /3 y /3 z /3 3 33
Open Access Status
This publication is not available as open access
Funding Number
51672220
Funding Sponsor
National Natural Science Foundation of China