On the chemistry of small waterbodies linked to marine aerosols and local geology on the Windmill Islands and mainland near Casey Station, Antarctica

Publication Name

Marine and Freshwater Research

Abstract

Context: In total, 43 shallow waterbodies were sampled in 1983 in the vicinity of Casey Station and nearby islands in Antarctica. The following physico-chemical parameters were obtained: water and air temperature, pH, conductivity, dissolved oxygen, plus major and minor elements. Aims: To identify the physico-chemical characteristics of these waters and determine their origin, and calculate their mineral saturation indices. Methods: Waters were analysed using standard methods, including for some elements, flame-atomic absorption spectrometry, spectrophotometry, ion chromatography and gravimetric determination. Mineral saturation indices were calculated using the PHREEQ program. Key results: Water salinities were generally low and in the range of 120-1200 mg L-1 (total dissolved solids, TDS), except for one site connected to the sea, and four slightly saline sites. The Na/Cl, Cl/Br and Ca/SO4 ratios of several waters were in the vicinity of seawater ratios, implying a contribution of marine aerosols. However, the Mg/Ca ratio of most waters departed from the seawater ratio, plus there was concordance between the molar ratios of (Na + K)/(Ca + Mg) of many of the waters sampled and those calculated from rock geochemical analyses from diverse lithologies. Such chemical 'provincialism' appears to be dictated by rock composition. Nitrate and phosphate concentrations were high in the vicinity of penguin rookeries. Conclusions: Two sources of ions are identified, one as marine aerosols as shown by three sets of ratios (Na/Cl, Cl/Br and Ca/SO4) with known marine values, and the other from the weathering of local rocks as shown by (Na + K)/(Ca + Mg) of the lake waters compared to the same ratios for the surrounding rocks. Only a few waterbodies have saturation levels for several carbonate minerals (calcite, aragonite, dolomite and rhodochrosite). Implications: Future work is recommended for monitoring the waterbodies surrounding Casey Station as a result of the increased atmospheric CO2 concentration that has occurred over the past 40 years, and likely also with the cessation of building activities around Casey Station.

Open Access Status

This publication is not available as open access

Volume

74

Issue

15

First Page

1275

Last Page

1295

Share

COinS
 

Link to publisher version (DOI)

http://dx.doi.org/10.1071/MF23080