A normative approach for resilient multiagent systems
Publication Name
Autonomous Agents and Multi-Agent Systems
Abstract
We model a multiagent system (MAS) in socio-technical terms, combining a social layer consisting of norms with a technical layer consisting of actions that the agents execute. This approach emphasizes autonomy, and makes assumptions about both the social and technical layers explicit. Autonomy means that agents may violate norms. In our approach, agents are computational entities, with each representing a different stakeholder. We express stakeholder requirements of the form that a MAS is resilient in that it can recover (sufficiently) from a failure within a (sufficiently short) duration. We present ReNo, a framework that computes probabilistic and temporal guarantees on whether the underlying requirements are met or, if failed, recovered. ReNo supports the refinement of the specification of a socio-technical system through methodological guidelines to meet the stated requirements. An important contribution of ReNo is that it shows how the social and technical layers can be modeled jointly to enable the construction of resilient systems of autonomous agents. We demonstrate ReNo using a manufacturing scenario with competing public, industrial, and environmental requirements.
Open Access Status
This publication is not available as open access
Volume
37
Issue
2
Article Number
46
Funding Number
IIS-1908374
Funding Sponsor
National Science Foundation