The Cold Angular Rolling Process of Copper Sheets: Unraveling Plastic Deformation Behavior and Unveiling Microstructural Transformations

Publication Name

Advanced Engineering Materials

Abstract

The cold angular rolling process (CARP) is being developed as a continuous severe plastic deformation technique, which can process metal sheets without any length limitations at room temperature. CARP contains cold rolling and equal-channel angular process components. The sheet thickness is kept consistent before and after CARP, allowing multiple passes of the sheet. The desired microstructure and mechanical properties can be achieved in the processed metallic sheets. The current study is aimed to evaluate the capability of CARP by processing copper sheets with different sheet widths for repetitive passes. The CARP-treated sheets are examined by lab-scale X-ray and high-energy synchrotron X-ray diffraction to investigate the evolution in dislocation density, texture, and strain anisotropy, and by tensile testing to identify the bulk mechanical properties. The digital image correlation method is applied to tensile testing so that strain localization within the sample gauge is visualized and deformation behavior is evaluated after yielding till postnecking by estimating the hardening exponent and strain hardening rate of the CARP-treated sheet. Comparing the reported continuous and multiple-step processes on Cu and its alloys, the present study confirms that the CARP is potentially a useful sheet process for strengthening ductile metals.

Open Access Status

This publication is not available as open access

Funding Number

CMMI‐2051205

Funding Sponsor

National Science Foundation

Share

COinS
 

Link to publisher version (DOI)

http://dx.doi.org/10.1002/adem.202300742