Automated Patch Clamp Screening of Amiloride and 5-N,N-Hexamethyleneamiloride Analogs Identifies 6-Iodoamiloride as a Potent Acid-Sensing Ion Channel Inhibitor

Publication Name

Molecular Pharmaceutics

Abstract

Acid-sensing ion channels (ASICs) are transmembrane sensors of extracellular acidosis and potential drug targets in several disease indications, including neuropathic pain and cancer metastasis. The K+-sparing diuretic amiloride is a moderate nonspecific inhibitor of ASICs and has been widely used as a probe for elucidating ASIC function. In this work, we screened a library of 6-substituted and 5,6-disubstituted amiloride analogs using a custom-developed automated patch clamp protocol and identified 6-iodoamiloride as a potent ASIC1 inhibitor. Follow-up IC50 determinations in tsA-201 cells confirmed higher ASIC1 inhibitory potency for 6-iodoamiloride 94 (hASIC1 94 IC50 = 88 nM, cf. amiloride 11 IC50 = 1.7 μM). A similar improvement in activity was observed in ASIC3-mediated currents from rat dorsal root ganglion neurons (rDRG single-concentration 94 IC50 = 230 nM, cf. 11 IC50 = 2.7 μM). 6-Iodoamiloride represents the amiloride analog of choice for studying the effects of ASIC inhibition on cell physiology.

Open Access Status

This publication is not available as open access

Volume

20

Issue

7

First Page

3367

Last Page

3379

Funding Number

PG2019396

Funding Sponsor

Australian Research Council

Share

COinS
 

Link to publisher version (DOI)

http://dx.doi.org/10.1021/acs.molpharmaceut.2c01083