Simulator selection based on complex probabilistic hesitant fuzzy soft structure using multi-parameters group decision-making

Publication Name

AIMS Mathematics

Abstract

Simulation software replicates the behavior of real electrical equipment using mathematical models. This is efficient not only in regard to time savings but also in terms of investment. It, at large scale for instance airplane pilots, chemical or nuclear plant operators, etc., provides valuable experiential learning without the risk of a catastrophic outcome. But the selection of a circuit simulator with effective simulation accuracy poses significant challenges for today’s decision-makers because of uncertainty and ambiguity. Thus, better judgments with increased productivity and accuracy are crucial. For this, we developed a complex probabilistic hesitant fuzzy soft set (CPHFSS) to capture ambiguity and uncertain information with higher accuracy in application scenarios. In this manuscript, the novel concept of CPHFSS is explored and its fundamental laws are discussed. Additionally, we investigated several algebraic aspects of CPHFSS, including union, intersections, soft max-AND, and soft min-OR operators, and we provided numerical examples to illustrate these key qualities. The three decision-making strategies are also constructed using the investigated idea of CPHFSS. Furthermore, numerical examples related to bridges and circuit simulation are provided in order to assess the validity and efficacy of the proposed methodologies. The graphical expressions of the acquired results are also explored. Finally, we conclude the whole work.

Open Access Status

This publication may be available as open access

Volume

8

Issue

8

First Page

17765

Last Page

17802

Funding Number

RSP2023R167

Funding Sponsor

King Saud University

Share

COinS
 

Link to publisher version (DOI)

http://dx.doi.org/10.3934/math.2023907