Study on the solid solution temperature of achieving ultra-high strength in wire-arc additive manufactured Al-Zn-Mg-Cu aluminum alloy

Publication Name

Materials Characterization

Abstract

Al-Zn-Mg-Cu aluminum alloys are typically heat-treatable aluminum alloys. The heat treatment has a significant effect on the microstructure and mechanical properties of Al-Zn-Mg-Cu alloy. In this study, the solid solution temperature of achieving ultra-high strength in wire-arc additive manufactured 7B55 aluminum alloy was systematically investigated. The results showed that the microstructure of the as-deposited 7B55 aluminum alloy was composed of equiaxed grains with an average grain size of 4.2 ± 0.5 μm. A large number of the second phases were continuously distributed along grain boundaries. The precipitated phases within grains were mainly composed of the larger η phases and the smaller η′ phases, and the amount of precipitated phases was fewer. The second phases distributed along grain boundaries gradually dissolved into α-Al matrix with the increase of solid solution temperature, resulting in a higher supersaturation of the α-Al matrix and more homogeneous distribution of alloy elements. Combined with the results of DSC analysis, the optimal solid solution temperature of the 7B55 aluminum alloy was determined to be 480 °C. After solid solution of 480 °C,the microstructure was still composed of equiaxed grains with an average grain size of 4.8 ± 0.4 μm. The size of the grain did not grow significantly. A larger number of nanoscale fine GP zones, η′ phases and secondary Al3(Sc,Zr) particles were precipitated within the grains during subsequently artificial aging process, resulting in a significant increase in tensile properties. The ultimate tensile strength (UTS), yield strength (YS) and elongation (EL) reached 621 MPa, 555 MPa and 5.73%, respectively, which was significantly higher than the strength level of WAAM aluminum alloy reported among all the existing literature.

Open Access Status

This publication is not available as open access

Volume

201

Article Number

112975

Funding Number

202208200005

Funding Sponsor

China Scholarship Council

Share

COinS
 

Link to publisher version (DOI)

http://dx.doi.org/10.1016/j.matchar.2023.112975