Spin Reorientation Transition and Negative Magnetoresistance in Ferromagnetic NdCrSb3 Single Crystals

Publication Name



High-quality NdCrSb3 single crystals are grown using a Sn-flux method, for electronic transport and magnetic structure study. Ferromagnetic ordering of the Nd3+ and Cr3+ magnetic sublattices are observed at different temperatures and along different crystallographic axes. Due to the Dzyaloshinskii–Moriya interaction between the two magnetic sublattices, the Cr moments rotate from the b axis to the a axis upon cooling, resulting in a spin reorientation (SR) transition. The SR transition is reflected by the temperature-dependent magnetization curves, e.g., the Cr moments rotate from the b axis to the a axis with cooling from 20 to 9 K, leading to a decrease in the b-axis magnetization f and an increase in the a-axis magnetization. Our elastic neutron scattering along the a axis shows decreasing intensity of magnetic (300) peak upon cooling from 20 K, supporting the SR transition. Although the magnetization of two magnetic sublattices favours different crystallographic axes and shows significant anisotropy in magnetic and transport behaviours, their moments are all aligned to the field direction at sufficiently large fields (30 T). Moreover, the magnetic structure within the SR transition region is relatively fragile, which results in negative magnetoresistance by applying magnetic fields along either a or b axis. The metallic NdCrSb3 single crystal with two ferromagnetic sublattices is an ideal system to study the magnetic interactions, as well as their influences on the electronic transport properties.

Open Access Status

This publication may be available as open access





Article Number


Funding Number


Funding Sponsor

Australian Research Council



Link to publisher version (DOI)