DEVELOPMENT AND CHARACTERIZATION OF CaCO3-CALCINATED COW BONE-DERIVED CaO/P2O5 PARTICULATE HYBRID REINFORCED POLYPROPYLENE COMPOSITES
Publication Name
Journal of Chemical Technology and Metallurgy
Abstract
Hybrid reinforced bio-composite material was developed in this study from polypropylene, calcium carbonate and waste cow bone. The cow bone was calcinated, pulverised and sieved to obtain 3 particle sizes (< 53, 63 and 75 μm) that were added to CaCO3 to form hybrid composites. The composites were developed with hot compression moulding machine using predetermined proportions of the composite constituents. XRF analysis shows that the cow bone is primarily CaO/P2O5 while XRD revealed higher crystallinity in < 53 μm particle sizes. Mechanical and wear properties of the CaCO3/calcinated cow bone-derived CaO/P2O5 particulate reinforced polypropylene (PP) composites were evaluated as a function of the varied calcinated cow bone (CCB) particulates. The result showed that the mechanical and wear properties of the hybrid reinforced CaCO3-CCB-PP composites were mostly enhanced when < 53 μm was added to the other common additives (CaCO3 and PP) with the exception of ultimate tensile strength which was enhanced by 63 μm. The improvement in all these properties mainly for 3 - 6 wt. % reinforced composites was due to the incorporation of CaCO3 and calcinated cow bone-derived CaO/P2O5. The results displayed an almost linear relationship between the wear properties and CCB both in terms of mass and particle size.
Open Access Status
This publication is not available as open access
Volume
57
Issue
6
First Page
1129
Last Page
1141