Collagen Alignment via Electro-Compaction for Biofabrication Applications: A Review

Publication Name

Polymers

Abstract

As the most prevalent structural protein in the extracellular matrix, collagen has been extensively investigated for biofabrication-based applications. However, its utilisation has been impeded due to a lack of sufficient mechanical toughness and the inability of the scaffold to mimic complex natural tissues. The anisotropic alignment of collagen fibres has been proven to be an effective method to enhance its overall mechanical properties and produce biomimetic scaffolds. This review introduces the complicated scenario of collagen structure, fibril arrangement, type, function, and in addition, distribution within the body for the enhancement of collagen-based scaffolds. We describe and compare existing approaches for the alignment of collagen with a sharper focus on electro-compaction. Additionally, various effective processes to further enhance electro-compacted collagen, such as crosslinking, the addition of filler materials, and post-alignment fabrication techniques, are discussed. Finally, current challenges and future directions for the electro-compaction of collagen are presented, providing guidance for the further development of collagenous scaffolds for bioengineering and nanotechnology.

Open Access Status

This publication may be available as open access

Volume

14

Issue

20

Article Number

4270

Funding Number

CE 140100012

Funding Sponsor

Australian National Fabrication Facility

Share

COinS
 

Link to publisher version (DOI)

http://dx.doi.org/10.3390/polym14204270