UV photodissociation action spectra of protonated formylpyridines

Publication Name

Journal of Chemical Physics

Abstract

The first ππ∗ transition for protonated 2-, 3-, and 4-formylpyridine (FPH+) (m/z 108) is investigated by mass spectrometry coupled with photodissociation action spectroscopy at room temperature and 10 K. The photoproduct ions are detected over 35 000-43 000 cm-1, and the major product channel for 3-FPH+ and 4-FPH+ is the loss of CO forming protonated pyridine at m/z 80. For 2-FPH+, the CO loss product is present but a more abundant photoproduct arises from the loss of CH2O to form m/z 78. Plausible potential energy pathways that lead to dissociation are mapped out and comparisons are made to products arising from collision-induced dissociation. Although, in all cases, the elimination of CO is the overwhelming thermodynamically preferred pathway, the protonated 2-FPH+ results suggest that the CH2O product is kinetically driven and competitive with CO loss. In addition, for each isomer, radical photoproduct ions are detected at lower abundances. SCS-CC2/aug-cc-pVTZ Franck-Condon simulations assist with the assignment of vibrionic structure and adiabatic energies (0-0) for 2-FPH+ at 36 560 cm-1, 37 430 cm-1 for 3-FPH+, and 36 140 cm-1 for 4-FPH+, yielding an accurate prediction, on average, within 620 cm-1.

Open Access Status

This publication is not available as open access

Volume

157

Issue

13

Article Number

134305

Funding Number

DP170101596

Funding Sponsor

Australian Research Council

Share

COinS
 

Link to publisher version (DOI)

http://dx.doi.org/10.1063/5.0113107