Predicting Solvent Effects on SN2 Reaction Rates: Comparison of QM/MM, Implicit, and MM Explicit Solvent Models

Publication Name

Journal of Physical Chemistry B

Abstract

Solvents are one of the key variables in the optimization of a synthesis yield or properties of a synthesis product. In this paper, contemporary solvent models are applied to predict the rates of SN2 reactions in a range of aqueous and non-aqueous solvents. High-level CCSD(T)/CBS//M06-2X/6-31+G(d) gas phase energies were combined with solvation free energies from SMD, SM12, and ADF-COSMO-RS continuum solvent models, as well as molecular mechanics (MM) explicit solvent models with different atomic charge schemes to predict the rate constants of three SN2 reactions in eight protic and aprotic solvents. It is revealed that the prediction of rate constants in organic solvents is not necessarily less challenging than in water and popular solvent models struggle to predict their rate constants to within 3 log units of experimental values. Among the continuum solvent models, the ADF-COSMO-RS model performed the best in predicting absolute rate contants while the SM12 model was best at predicting relative rate constants with an average accuracy of about 1.5 and 0.8 log units, respectively. The use of computationally more demanding MM explicit solvent models did not translate to improvements in absolute rate constants but was quite effective at predicting relative rate constants due to systematic error cancellation. Free energy barriers obtained from umbrella sampling with explicit solvent QM/MM simulations led to excellent agreement with experimental values, provided that a validated level of theory is used to treat the QM region.

Open Access Status

This publication is not available as open access

Volume

126

Issue

44

First Page

9047

Last Page

9058

Funding Number

DP210102698

Funding Sponsor

Australian Research Council

Share

COinS
 

Link to publisher version (DOI)

http://dx.doi.org/10.1021/acs.jpcb.2c06000