A conductive polymer composite derived from polyurethane and cathodically exfoliated graphene

Publication Name

Materials Today Chemistry

Abstract

Composite electrodes represent an important class of electromaterials, with enhanced functional properties tailored for targeted applications. Introduction of graphene as a conductive nanofiller into the thermoplastic polyurethane (PU) provides electrodes with interesting properties. In this study, a highly conductive cathodically exfoliated graphene (CEG) of ∼2–8 μm lateral size was employed to prepare CEG-PU composites. The use of this larger graphene sheet requires loading of at least 20% w/w graphene to promote contact between the sheets, hence the conductivity. The CEG-PU composite electrodes were tested to determine their electrochemical capacitance and it was found that the 40% (w/w) CEG-PU composite shows areal capacitance, energy density, and power density of 2.51 mF/cm2, 1.56 μW/h/cm2, and 0.48 mW/cm2, respectively, at a current density of 0.2 mA/cm2 and an operating voltage of 1.0 V. In summary, the CEG-PU composite electrodes have excellent conductivity, chemical/mechanical properties, and capacitive performance.

Open Access Status

This publication is not available as open access

Volume

27

Article Number

101313

Funding Number

CE 140100012

Funding Sponsor

Australian Research Council

Share

COinS
 

Link to publisher version (DOI)

http://dx.doi.org/10.1016/j.mtchem.2022.101313