Composition of dissolved organic matter (DOM) in wastewater treatment plants influent affects the efficiency of carbon and nitrogen removal

Publication Name

Science of the Total Environment

Abstract

Wastewater treatment plants (WWTPs) play a critical role in receiving, removing, and discharging dissolved organic matter (DOM) in aquatic systems. To date, understanding the composition and fate of DOM in different WWTPs with various environmental and socioeconomic conditions is limited. This study analyzed DOM components in the influent and effluent samples from 49 WWTPs in China using EEM-PARAFAC and ESI-FT-ICR-MS methods. The influencing factors of DOM components in the influent were also analyzed. Geographic location and GDP showed significant (p < 0.05) correlations with DOM components in the influent. The removal efficiency of DOM in WWTPs was closely related to the DOM compositions, where carbohydrates, lipids, and protein-like components (removal efficiencies > 75 %) were more readily decomposed than the humic-like components, lignin, and tannin. The relative fraction of humic-like compound C3 in the influent was correlated negatively with total nitrogen (TN) and chemical oxygen demand (COD) removal in WWTPs (p < 0.05). Besides, the relative fraction of DOM containing the element sulfur also showed significant negative correlations with the humification of DOM (p < 0.05). The results from EEM-PARAFAC and ESI-FT-ICR-MS methods showed no obvious correlation for the DOM characterizations except for humic-like fluorescent fraction C3 and lignin, while significant positive correlations (p < 0.05) between the aromatic index (AI_mod) from the ESI-FT-ICR-MS analysis and the humification index (HIX) from spectrofluorimetry. This supports the use of these spectral indexes as simple surrogates to represent part chemical compositions in further research.

Open Access Status

This publication is not available as open access

Volume

857

Article Number

159541

Funding Number

42207278

Funding Sponsor

National Natural Science Foundation of China

Share

COinS
 

Link to publisher version (DOI)

http://dx.doi.org/10.1016/j.scitotenv.2022.159541