Monolithic Phosphate Interphase for Highly Reversible and Stable Zn Metal Anode

Publication Name

Angewandte Chemie - International Edition

Abstract

Zinc metal battery (ZMB) is promising as the next generation of energy storage system, but challenges relating to dendrites and corrosion of the zinc anode are restricting its practical application. Here, to stabilize Zn anode, we report a controlled electrolytic method for a monolithic solid-electrolyte interphase (SEI) via a high dipole moment solvent dimethyl methylphosphonate (DMMP). The DMMP-based electrolytes can generate a homogeneous and robust phosphate SEI (Zn3(PO4)2 and ZnP2O6). Benefiting from the protecting impact of this in situ monolithic SEI, the zinc electrode exhibits long-term cycling of 4700 h and a high Coulombic efficiency 99.89 % in Zn|Zn and Zn|Cu cell, respectively. The full V2O5|Zn battery with DMMP-H2O hybrid electrolyte exhibits a high capacity retention of 82.2 % following 4000 cycles under 5 A g−1. The first success in constructing the monolithic phosphate SEI will open a new avenue in electrolyte design for highly reversible and stable Zn metal anodes.

Open Access Status

This publication is not available as open access

Volume

62

Issue

4

Article Number

e202215600

Funding Number

DP200101862

Funding Sponsor

Australian Research Council

Share

COinS
 

Link to publisher version (DOI)

http://dx.doi.org/10.1002/anie.202215600