Publication Name
Advanced Materials Technologies
Abstract
The ubiquity of wearables, coupled with the increasing demand for power, presents a unique opportunity for fiber-based mobile energy generator systems. However, no commercially available systems currently exist with typical problems including low energy efficiency; short cycle life; slow and expensive manufacturing; and stiff, heavy or bulky componentry that reduce wearer comfort and aesthetic appeal. Herein, a new method is demonstrated to create wearable energy generators and sensors using nanostructured hybrid polyvinylidene fluoride (PVDF)/reduced graphene oxide (rGO)/barium-titanium oxide (BT) piezoelectric fibers and exploiting the enormous variety of textile architectures. Highly stretchable piezoelectric fibers based on coiled PVDF/rGO/BT fibers energy generator and sensor are developed. It is found that the coiled PVDF/ rGO/BT enables to stretch up to ≈100% strain that produces a peak voltage output of ≈1.3 V with a peak power density of 3 W Kg which is 2.5 times higher than previously reported for piezoelectric textiles. An energy conversion efficiency of 22.5% is achieved for the coiled hybrid piezofiber energy generator. A prototype energy generator and sensors based on a hybrid piezofibers wearable device for energy harvesting and monitoring real time precise healthcare are demonstrated. −1
Volume
6
Issue
2
Article Number
2000841
Funding Number
DE130100517
Funding Sponsor
Australian National Fabrication Facility