Effect of different rotational speeds on graphene-wrapped sic core-shell nanoparticles in wet milling medium
Publication Name
Materials
Abstract
The effects of the wet milling rotating speed on the number of graphene layers and graphene quality, and the conversion efficiency of graphite exfoliate to graphene, were investigated by scanning electron microscopy (SEM), high resolution transmission electron microscopy (HRTEM), Raman spectroscopy, Fourier transform infrared spectroscopy (FTIR), and X-ray diffraction (XRD). The results show that the number of few-layer graphene nanometer sheets (GNSs) (≤10 layers) gradually increases with the increase of rotational speed in the range of 160–240 rpm. The proportion of GNSs with 0–10 layers reaches more than 80% as the rotational speed is increased to 280 rpm. GNS defect types in the composite materials are marginal defects with minimal influence and almost no oxidation. In the range of 160–280 rpm, the intensity of graphite peak decreases and the conversion efficiency of graphene increases with the increase of rotational speed. This is the same as the experimental result obtained by HRTEM.
Open Access Status
This publication may be available as open access
Volume
14
Issue
4
Article Number
944
First Page
1
Last Page
17
Funding Number
201905
Funding Sponsor
National Natural Science Foundation of China