Enhancing Anticancer Potency of a 13-Substituted Berberine Derivative with Cationic Liposomes
Publication Name
Chemical and Pharmaceutical Bulletin
Abstract
Cationic liposomal formulations of the telomeric G-quadruplex stabilizing ligand, 13-(2-naphthylmethoxy)-berberine bromide (1), have been developed with the purpose of delivering 1 into the nucleus of cancer cells for potential telomere targeting. Berberine derivative 1 was encapsulated in various cationic lipids 2–4 by the thin film evaporation method; these lipids are cationic after amine protonation. The most appropriate liposomal berberine formulation was that of 1 and the cholesterol derived cationic lipid 4 in a weight ratio of 1:20 with 76.5% encapsulation efficiency of 1. Cellular uptake studies in the HeLa and HT-29 cancer cells lines showed that the liposomal berberine derivative uptake in the cells was higher and more stable than for berberine derivative 1 alone while free 1 was completely decomposed in the cells within 60min exposure to the cells. Anticancer activity of the liposomal berberine derivative 1 based on 4 was greater than that for the free berberine derivative 1 in the MCF-7, HeLa and HT-29 cell line by 2.3-, 4.9- and 5.3-fold, respectively, and also, interestingly, superior to the anticancer drug doxorubicin against the HT29 cancer cell line.
Volume
70
Issue
6
First Page
420
Last Page
426