Developing better ester- And ether-based electrolytes for potassium-ion batteries

Publication Name

Chemical Science

Abstract

Potassium-ion batteries (PIBs) have attracted extensive attention for next-generation energy storage systems because of the high abundance of potassium resources and low cost. However, the electrochemical performance of PIBs still cannot satisfy the requirements of practical application. One of the most effective strategies to improve the electrochemical performance of PIBs is electrolyte optimization. In this review, we focus on recent advances in ester- and ether-based electrolytes for high-performance PIBs. First, we discuss the requirements and components of organic electrolytes (potassium salts and solvents) for PIBs. Then, the strategies toward optimizing the electrolytes have been summarized, including potassium salt optimization, solvent optimization, electrolyte concentration optimization, and introducing electrolyte additives. In general, the electrolyte optimization methods can adjust the solvation energy, the lowest unoccupied molecular orbital energy level, and the highest occupied molecular orbital energy level, which are beneficial for achieving fast kinetics, stable and highly K -conductive solid-electrolyte interphase layer, and superior oxidation resistance, respectively. Future studies should focus on exploring the effects of composition on electrolyte characteristics and the corresponding laws. This review provides some significant guidance to develop better electrolytes for high-performance PIBs. +

Open Access Status

This publication may be available as open access

Volume

12

Issue

7

First Page

2345

Last Page

2356

Funding Number

21835004

Funding Sponsor

National Natural Science Foundation of China

Share

COinS
 

Link to publisher version (DOI)

http://dx.doi.org/10.1039/d0sc06537d