Rh(I)-Catalyzed Denitrogenative Transformations of 1,2,3-Thiadiazoles: Ligand-Controlled Product Selectivity and the Structure of the Key Organorhodium Intermediate Revealed

Publication Name

ACS Catalysis

Abstract

Ligand-controlled rhodium(I)-catalyzed denitrogenative transformations of a range of 4-vinyl-1,2,3-thiadiazoles possessing electron-donating substituents at the C5-position of the heterocycle have been demonstrated. With [Rh(COD)2]BF4, vinylic 1,2,3-thiadiazoles undergo an intramolecular transannulation reaction to afford substituted furans. In contrast, the [Rh(COD)DPPF]BF4catalytic system inhibits the intramolecular reaction but promotes intermolecular transannulation with both electron-deficient and electron-rich terminal alkynes, providing access to densely functionalized thiophenes with unexpected regioselectivity. Experimental and computational mechanistic studies were performed to gain insights into the Rh(I)-catalyzed intramolecular transannulation of vinylic 1,2,3-thiadiazoles, with a focus on understanding the influence of the C5-substituent on reactivity and the role of the DPPF ligand. Importantly, our crystallographic data uncovered that the true structure of the organorhodium intermediate involved in Rh(I)-catalyzed denitrogenative reactions of 1,2,3-thiadiazoles is likely to be a four-membered cyclometalated Rh(III) complex.

Open Access Status

This publication is not available as open access

Volume

12

Issue

9

First Page

5574

Last Page

5584

Funding Sponsor

American Psychiatric Association Foundation

Share

COinS
 

Link to publisher version (DOI)

http://dx.doi.org/10.1021/acscatal.2c01175