Scale-up of open zeolite bed reactors for sorption energy storage: Theory and experiment

Publication Name

Energy and Buildings

Abstract

Sorption energy storage (SES) technology has been considered one of the promising solutions to cope with the ever-increasing carbon emissions from buildings. Nevertheless, it is still elusive the extrapolation of conclusions from pilot-scale experiments to full-scale ones. In the present work, a relaxation technique was introduced to develop a scale-up model for SES reactors. A full set of scaling ratios of parameters for an analog reactor to those for a prototype reactor was explored, which theoretically ensured the similarity of the two reactors in geometry, dynamics, sorption-kinetics, and thermal performance. Subsequently, charging and discharging experiments were conducted in two geometrically similar reactors. Four performance ratios of the analog values to prototype values were calculated based on the measured data and were compared with theoretical values derived from the scale-up model. The results showed that these ratios were in good agreement with corresponding theoretical values, where the maximum deviation was less than 10%. Based on the developed scale-up model, a small-scale reactor can duplicate the thermal performance of a large-scale reactor on a miniature dimensional scale and in a reduced time scale.

Open Access Status

This publication is not available as open access

Volume

264

Article Number

112077

Funding Number

2018MS015

Funding Sponsor

National Natural Science Foundation of China

Share

COinS
 

Link to publisher version (DOI)

http://dx.doi.org/10.1016/j.enbuild.2022.112077