Photoplethysmographic waveform detection for determining hatching egg activity via deep neural network

Publication Name

Signal, Image and Video Processing

Abstract

It is essential to classify dead embryos and live embryos accurately in developing a successful vaccine. The deep learning-based classification of heartbeat signals to determine embryo activity is considered to be the most effective, but generally speaking, existing detection methods are either harmful to embryos or inefficient. The photoplethysmographic (PPG) waveform was used in this study for embryo activity detection. The PPG technique is non-invasive and works based on detection of optical absorption intensity in the blood. We rescaled the original data to weight each feature equally, which allows the CNN model to treat every feature in the data equally without neglecting low-intensity features. We also constructed a novel detection model capable of powerful feature extraction. Our model is based on the CNN structure and GRU. The CNN structure is the basic feature extractor. We added a channel attention mechanism to recalibrate the feature map channel, which enhances the network’s ability to extract useful features. The GRU module captures timing characteristics to compensate for the inability of the CNN to extract temporal information. We validated our approach on experimental data to find that it outperforms several baseline methods.

Open Access Status

This publication is not available as open access

Funding Number

TD13-5034

Funding Sponsor

Natural Science Foundation of Tianjin City

Share

COinS
 

Link to publisher version (DOI)

http://dx.doi.org/10.1007/s11760-021-02040-y