Electrochemical release of catalysts in nanoreactors for solid sulfur redox reactions in room-temperature sodium-sulfur batteries

Publication Name

Cell Reports Physical Science

Abstract

Electrocatalysis-assisted entrapment of polysulfide while ensuring efficient nucleation of Na2S holds the key to addressing the shuttle effect and sluggish kinetics of polysulfide in room-temperature (RT) Na/S batteries. The constrained active sites, however, dramatically limit the efficiency of electrocatalysts. Here, a strategy of electrochemically releasing nano-silver catalytic sites during the discharge process is presented, visualized, and implemented for accelerated Na2S nucleation. Because of the effective polysulfide immobilization and accelerated Na2S nucleation, the sulfur cathode, supported by a self-released silver electrocatalyst, exhibits a superior reversible capacity of 701 mAh g−1 at 0.1 A g−1 and an ultra-stable cycling performance. Precise understanding of the electrochemically self-releasing mechanism and the catalysis in Na2S nucleation via in situ transmission electron microscopy (TEM) would aid, however, in fundamentally optimizing the working mechanism and for further development of more stable high-power RT Na/S batteries.

Open Access Status

This publication may be available as open access

Volume

2

Issue

8

Article Number

100539

Funding Number

DE170100928

Funding Sponsor

Australian Research Council

Share

COinS
 

Link to publisher version (DOI)

http://dx.doi.org/10.1016/j.xcrp.2021.100539