Carbonaceous Hosts for Sulfur Cathode in Alkali-Metal/S (Alkali Metal = Lithium, Sodium, Potassium) Batteries
Publication Name
Small
Abstract
Alkali-metal/sulfur batteries hold great promise for offering relatively high energy density compared to conventional lithium-ion batteries. By providing viable sulfur composites that can be effectively used, carbonaceous hosts as a key component play critical roles in overcoming the preliminary challenges associated with the insulating sulfur and its relatively soluble polysulfides. Herein, a comprehensive overview and recent progress on carbonaceous hosts for advanced next-generation alkali-metal/sulfur batteries are presented. In order to encapsulate the highly active sulfur mass and fully limit polysulfide dissolution, strategies for tailoring the design and synthesis of carbonaceous hosts are summarized in this work. The sticking points that remain for sulfur cathodes in current alkali-metal/sulfur systems and the future remedies that can be provided by carbonaceous hosts are also indicated, which can lead to long cycling lifetimes and highly reversible capacities under repeated sulfur reduction reactions in alkali-metal/sulfur during cycling.
Open Access Status
This publication is not available as open access
Volume
17
Issue
48
Article Number
2006504
Funding Number
DE170100928
Funding Sponsor
Australian Research Council