Ni(NCS)2monolayer: A robust bipolar magnetic semiconductor
Publication Name
Nanoscale
Abstract
Searching for experimentally feasible intrinsic two-dimensional ferromagnetic semiconductors is of great significance for applications of nanoscale spintronic devices. Here, based on the first-principles calculations, an Ni(NCS)2 monolayer was systematically investigated. The results showed that the Ni(NCS)2 monolayer was a robust bipolar ferromagnetic semiconductor with a moderate bandgap of ∼1.5 eV. Based on the Monte Carlo simulation, its Curie temperature was about 37 K. Interestingly, the Ni(NCS)2 monolayer remains ferromagnetic ordering when strain and electron doping were applied. However, ferromagnetic-to-antiferromagnetic phase transition occurred when high concentrations of holes were doped. Besides, the Ni(NCS)2 monolayer is confirmed to be potentially exfoliated from its bulk forms due to its small exfoliated energy. Finally, the Ni(NCS)2 monolayer's thermodynamic, dynamic, and mechanical stabilities were confirmed by the phonon spectrum calculation, ab initio molecular dynamics simulation and elastic constants calculation, respectively. The results showed that the Ni(NCS)2 monolayer, as a novel 2D ferromagnetic candidate material of new magnetic molecular framework materials, may have a promising potential for magnetic nanoelectronic devices. This journal is
Open Access Status
This publication is not available as open access
Volume
13
Issue
39
First Page
16564
Last Page
16570
Funding Number
202300410069
Funding Sponsor
National Natural Science Foundation of China