Twist dependent magneto-optical response in twisted bilayer graphene
Publication Name
Journal of Physics Condensed Matter
Abstract
By employing a linearised Boltzmann equation, we calculate the magneto-optical properties of twisted bilayer graphene using non-magnetic wave functions. Both transverse and longitudinal responses are calculated up to the second order in applied magnetic field with their twist angle and Fermi level dependence examined. We find that increasing the twist angle increases the transverse metallic response so long as the Fermi level remains below the upper conduction band. Interlayer transitions provide an appreciable enhancement when the Fermi level traverses the gap between the two conduction bands. Interlayer transitions are also responsible for a nonzero anomalous Hall conductivity in this model. As the Fermi level moves towards zero, the longitudinal response begins to dominate and a highly anisotropic negative magneto-resistance is observed.
Open Access Status
This publication is not available as open access
Volume
33
Issue
44
Article Number
445501
Funding Number
DP210101436
Funding Sponsor
Australian Research Council