Explicitly assessing the durability of rc structures considering spatial variability and correlation

Publication Name

Infrastructures

Abstract

The durability design of reinforced concrete (RC) structures that are exposed to aggressive environmental attacks (e.g., corrosion due to chloride ingress in marine environment) plays a vital role in ensuring the structural serviceability within a reference period of interest. Existing approaches for the durability design and assessment of RC structures have, for the most part, not considered the spatial distribution of corrosion-related structural properties. In this paper, a closed-form approach is developed for durability assessment of RC structures, where the structural dimension, spatial variability, and correlation of structural properties such as the concrete cover thickness and the chloride diffusion coefficient are taken into account. The corrosion and crack initiations of an emerged tube tunnel segment that was used in the Hong Kong-Zhuhai-Macau bridge project were assessed to demonstrate the applicability of the proposed approach. The accuracy of the method was verified through a comparison with Monte Carlo simulation results based on two-dimensional random field modeling. The proposed method can be used to efficiently assess the durability performance of RC structures in the marine environment and has the potential to become an efficient tool to guide the durability design of RC structures subjected to corrosion.

Open Access Status

This publication may be available as open access

Volume

6

Issue

11

Article Number

156

Funding Sponsor

University of Wollongong

Share

COinS
 

Link to publisher version (DOI)

http://dx.doi.org/10.3390/infrastructures6110156