Coherent spin rotation-induced zero thermal expansion in MnCoSi-based spiral magnets

Publication Name

NPG Asia Materials

Abstract

Materials exhibiting zero thermal expansion (ZTE), namely, volume invariance with temperature change, can resist thermal shock and are highly desired in modern industries for high-precision components. However, pure ZTE materials are rare, especially those that are metallic. Here, we report the discovery of a pure metallic ZTE material: an orthorhombic Mn1-xNixCoSi spiral magnet. The introduction of Ni can efficiently enhance the ferromagnetic exchange interaction and construct the transition from a spiral magnetic state to a ferromagnetic-like state in MnCoSi-based alloys. Systematic in situ neutron powder diffraction revealed a new cycloidal spiral magnetic structure in the bc plane in the ground state, which transformed to a helical spiral in the ab plane with increasing temperature. Combined with Lorentz transmission electron microscopy techniques, the cycloidal and helical spin order coherently rotated at varying periods along the c-axis during the magnetic transition. This spin rotation drove the continuous movement of the coupled crystalline lattice and induced a large negative thermal expansion along the a-axis, eventually leading to a wide-temperature ZTE effect. Our work not only introduces a new ZTE alloy but also presents a new mechanism by which to discover or design ZTE magnets.

Open Access Status

This publication may be available as open access

Volume

13

Issue

1

Article Number

70

Funding Number

11974406

Funding Sponsor

National Outstanding Youth Science Fund Project of National Natural Science Foundation of China

Share

COinS
 

Link to publisher version (DOI)

http://dx.doi.org/10.1038/s41427-021-00338-4