Recent advances of polymer-based piezoelectric composites for biomedical applications

Publication Name

Journal of the Mechanical Behavior of Biomedical Materials

Abstract

Over the past decades, electronics have become central to many aspects of biomedicine and wearable device technologies as a promising personalized healthcare platform. Lead-free piezoelectric materials for converting mechanical into electrical energy through piezoelectric transduction are of significant value in a diverse range of technological applications. Organic piezoelectric biomaterials have attracted widespread attention as the functional materials in the biomedical devices due to their advantages of excellent biocompatibility. They include synthetic and biological polymers. Many biopolymers have been discovered to possess piezoelectricity in an appreciable amount, however their investigation is still preliminary. Due to their piezoelectric properties, better known synthetic fluorinated polymers have been intensively investigated and applied in biomedical applications including controlled drug delivery systems, tissue engineering, microfluidic and artificial muscle actuators, among others. Piezoelectric polymers, especially poly (vinylidene fluoride) (PVDF) and its copolymers are increasingly receiving interest as smart biomaterials due to their ability to convert physiological movements to electrical signals when in a controllable and reproducible manner. Despite possessing the greatest piezoelectric coefficients among all piezoelectric polymers, it is often desirable to increase the electrical outputs. The most promising routes toward significant improvements in the piezoelectric response and energy-harvesting performance of such materials is loading them with various inorganic nanofillers and/or applying some modification during the fabrication process. This paper offers a comprehensive review of the principles, properties, and applications of organic piezoelectric biomaterials (polymers and polymer/ceramic composites) with special attention on PVDF-based polymers and their composites in sensors, drug delivery and tissue engineering. Subsequently focuses on the most common fabrication routes to produce piezoelectric scaffolds, tissue and sensors which is electrospinning process. Promising upcoming strategies and new piezoelectric materials and fabrication techniques for these applications are presented to enable a future integration among these applications.

Open Access Status

This publication is not available as open access

Volume

122

Article Number

104669

Share

COinS
 

Link to publisher version (DOI)

http://dx.doi.org/10.1016/j.jmbbm.2021.104669