Highly Polymerized Wine-Red Carbon Nitride to Enhance Photoelectrochemical Water Splitting Performance of Hematite

Publication Name

Journal of Physical Chemistry C

Abstract

Polymeric carbon nitride photocatalyst has attracted much attention due to its visible light response and high chemical stability. However, bulk carbon nitride has a wide band gap and low polymerization, limiting its photocatalytic performance for water splitting. Synthesizing highly polymerized carbon nitride with a narrow band gap still remains challenging. Herein, we propose an ionothermal protocol using supramolecular precursors to fabricate highly polymerized wine-red carbon nitride (WRCN) nanosheets. Both theoretical and experimental investigations revealed that the supramolecular precursor with a high C:N ratio leads to an upward shift of the valence band edge, while the ionothermal synthesis promotes a high polymerization degree, leading to a narrow band gap of 1.82 eV for WRCN. Benefiting from enhanced light absorption and charge separation efficiency, WRCN-loaded hematite photoanode exhibits a much higher photocurrent density than both pristine hematite and bulk carbon nitride decorated hematite. This work may provide a novel strategy to manipulate the electronic structures of carbon nitrides for enhanced photoelectrochemical performances.

Open Access Status

This publication is not available as open access

Funding Number

DP200100365

Funding Sponsor

Australian Research Council

Share

COinS
 

Link to publisher version (DOI)

http://dx.doi.org/10.1021/acs.jpcc.1c02342