Effect of silicon and partitioning temperature on the microstructure and mechanical properties of high-carbon steel in a quenching and partitioning heat treatment

Publication Name

Journal of Materials Science

Abstract

Quenching and partitioning (Q andP) heat treatments of high- and low-silicon hyper-eutectoid steels, 0.21% and 1.7% silicon grades, have been investigated using dilatometry. In the present work, the amount and stability of retained austenite were quantified by a magnetic measurement technique. Optical microscopy (OM), high-resolution scanning electron microscope techniques and electron backscattered diffraction (EBSD) were used to identify and characterise the constituent phases. The mechanical properties were evaluated by micro-Vickers hardness measurements and nano-indentation measurements and linked to microstructural features. The results illustrate that increasing the silicon content will not prohibit bainite formation. At partitioning temperatures of 300 °C and higher, most retained austenite (RA) transformed to bainite in the low-silicon steel, while carbon partitioning was the main phenomenon in the 1.7 silicon grade steel. However, 28% of the bainite still formed in the presence of 1.7% silicon. In the high-silicon steel, the hardness decreased by 120HV by a mere increase in partitioning temperature from 250 to 300 °C. The wear resistance of bainitic microstructures resulting from isothermal transformation at 200 °C was similar to those of martensite. These outcomes provide an improved understanding of microstructural development with a view to industrial applications. A combination of 20–30% pre-existing martensite with 20% stabilized retained austenite and untempered martensite or/and lower bainite is suggested as a means of achieving the required mechanical properties.

Open Access Status

This publication is not available as open access

Funding Number

IH130200025

Funding Sponsor

Australian Research Council

Share

COinS
 

Link to publisher version (DOI)

http://dx.doi.org/10.1007/s10853-021-06270-w