Defect-free-induced Na+disordering in electrode materials

Publication Name

Energy and Environmental Science

Abstract

For reaching high-performance of electrode materials, it is generally believed that understanding the structure evolution and heterogeneous alignment effect is the key. Presently, a very simple and universally applicable self-healing method is investigated to prepare defect-free Prussian blue analogs (PBAs) that reach their theoretical capacity as cathode materials for sodium-ion batteries (SIBs). For direct imaging of the local structure and the dynamic process at the atomic scale, we deliver a fast ion-conductive nickel-based PBA that enables rapid Na+ extraction/insertion within 3 minutes and a capacity retention of nearly 100% over 4000 cycles. This guest-ion disordered and quasi-zero-strain nonequilibrium solid-solution reaction mechanism provides an effective guarantee for realizing long-cycle life and high-rate capability electrode materials that operate via reversible two-phase transition reaction. Unconventional materials and mechanisms that enable reversible insertion/extraction of ions in low-cost metal-organic frameworks (MOFs) within minutes have implications for fast-charging devices, grid-scale energy storage applications, material discovery, and tailored modification.

Open Access Status

This publication is not available as open access

Volume

14

Issue

5

First Page

3130

Last Page

3140

Funding Number

51732005

Funding Sponsor

National Natural Science Foundation of China

Share

COinS
 

Link to publisher version (DOI)

http://dx.doi.org/10.1039/d1ee00087j