A novel granular sludge-based and highly corrosion-resistant bio-concrete in sewers

Publication Name

Science of the Total Environment

Abstract

Bio-concrete is known for its self-healing capacity although the corrosion resistance was not investigated previously. This study presents an innovative bio-concrete by mixing anaerobic granular sludge into concrete to mitigate sewer corrosion. The control concrete and bio-concrete (with granular sludge at 1% and 2% of the cement weight) were partially submerged in a corrosion chamber for 6 months, simulating the tidal-region corrosion in sewers. The corrosion rates of 1% and 2% bio-concrete were about 17.2% and 42.8% less than that of the control concrete, together with 14.6% and 35.0% less sulfide uptake rates, 15.3% and 55.6% less sulfate concentrations, and higher surface pH (up to 1.8 units). Gypsum and ettringite were major corrosion products but in smaller sizes on bio-concrete than that of control concrete. The total relative abundance of corrosion-causing microorganisms, i.e. sulfide-oxidizing bacteria, was significantly reduced on bio-concrete, while more sulfate-reducing bacteria (SRB) was detected. The corrosion-resistance of bio-concrete was mainly attributed to activities of SRB derived from the granular sludge, which supported the sulfur cycle between the aerobic and anaerobic corrosion sub-layers. This significantly reduced the net production of biogenic sulfuric acid and thus corrosion. The results suggested that the novel granular sludge-based bio-concrete provides a highly potential solution to reduce sewer corrosion.

Open Access Status

This publication is not available as open access

Volume

791

Article Number

148270

Funding Number

DE170100694

Funding Sponsor

Australian Research Council

Share

COinS
 

Link to publisher version (DOI)

http://dx.doi.org/10.1016/j.scitotenv.2021.148270