On the effects of recursive convolutional layers in convolutional neural networks

Publication Name

Neurocomputing

Abstract

The Recursive Convolutional Layer (RCL) is a module that wraps a recursive feedback loop around a convolutional layer (CL). The RCL has been proposed to address some of the shortcomings of Convolutional Neural Networks (CNNs), as its unfolding increases the depth of a network without increasing the number of weights. We investigated the “naïve” substitution of CL with RCL on three base models: a 4-CL model, ResNet, DenseNet and their RCL-ized versions: C-FRPN, R-ResNet, and R-DenseNet using five image classification datasets. We find that this one-to-one replacement significantly improves the performances of the 4-CL model, but not those of ResNet or DenseNet. This led us to investigate the implication of the RCL substitution on the 4-CL model which reveals, among a number of properties, that RCLs are particularly efficient in shallow CNNs. We proceeded to re-visit the first set of experiments by gradually transforming the 4-CL model and the C-FRPN into respectively ResNet and R-ResNet, and find that the performance improvement is largely driven by the training regime whereas any depth increase negatively impacts the RCL-ized version. We conclude that the replacement of CLs by RCLs shows great potential in designing high-performance shallow CNNs.

Open Access Status

This publication is not available as open access

Volume

591

Article Number

127767

Funding Number

DP210102674

Funding Sponsor

Università degli Studi di Firenze

Share

COinS
 

Link to publisher version (DOI)

http://dx.doi.org/10.1016/j.neucom.2024.127767