Design and Analysis of a Linear Electric Generator for Harvesting Vibration Energy

Publication Name

Energies

Abstract

This paper provides a proof of concept for a linear electric generator that can be used to harvest energy from various sources of linear motion, such as vibrations, free-piston engines and wave energy. The generator can be used to power small electronic devices, such as sensors, or charge household batteries. The literature was reviewed to develop an understanding about the applications, control methods, excitation methods and mechanics of rotating and linear electric machines. A bidirectional, two-sided linear machine was designed with two stator cores and a single mover core. The stator windings and mover winding can be independently excited, allowing for three modes: no mover excitation, a DC excited mover, and an AC excited mover. Simulation results showed that the magnetic flux generated by DC excited stator cores were concentrated in the centre of the mover core. The use of two stator cores eliminates lateral flux in the mover core when it is not excited, minimising attraction and repulsion forces. Parametric analysis showed that flux cutting occurred in all operation modes, verifying that the generator will produce power when operating. Hardware tests produced an output current when the machine was electrically and mechanically excited, verifying the proposed design.

Open Access Status

This publication is not available as open access

Volume

17

Issue

7

Article Number

1715

Share

COinS
 

Link to publisher version (DOI)

http://dx.doi.org/10.3390/en17071715