Divergent Reactivity of 1,2,3-Benzotriazin-4(3H)-ones: Photocatalytic Synthesis of 3-Substituted Isoindolinones Achieved through a Nitrogen-Mediated Hydrogen Atom Shift

Publication Name

Journal of Organic Chemistry

Abstract

A regioselective visible-light-mediated denitrogenative alkene insertion of 1,2,3-benzotriazin-4(3H)-ones was developed to access 3-substituted isoindolinones, an important structural motif present in many biologically active molecules and natural products. Notably, divergent reactivity was achieved by switching from reported nickel catalysis (where C3-substituted 3,4-dihydroisoquinolin-1(2H)-ones form) to photocatalysis, where photocatalytic denitrogenation and a subsequent nitrogen-mediated hydrogen atom shift lead to exclusive 3-substituted isoindolinone formation. The developed photocatalytic reaction is compatible with activated terminal alkenes and cyclic α,β-unsaturated esters and ketones, with wide functional group tolerance for N-substitution of the 1,2,3-benzotriazin-4(3H)-ones. The utility of this procedure is highlighted by a gram-scale synthesis and postsynthetic amidation. To understand the origin of this unique product selectivity, experimental and computational mechanistic studies were performed.

Open Access Status

This publication is not available as open access

Volume

89

Issue

3

First Page

1836

Last Page

1845

Funding Sponsor

National Computational Infrastructure

Share

COinS
 

Link to publisher version (DOI)

http://dx.doi.org/10.1021/acs.joc.3c02545