Distribution network voltage analysis with data-driven electric vehicle load profiles

Publication Name

Sustainable Energy, Grids and Networks

Abstract

The number of electric vehicles (EVs) is expected to increase significantly in the near future, which will affect the operation of future power networks. This study investigates the impact of EVs on the distribution network voltage profile by collecting measurements from residential, slow commercial, and fast public EV charging stations throughout the annual cycle. It is revealed from the data that annual utilization factors for residential, slow commercial, and fast public charging stations are 89%, 55%, and 24%, respectively. The optimal power flow solutions have been presented without the EV and with EV (home, commercial, and public) load profiles. Simulation results identify the voltage violation's extent, instant, and duration that may affect the future distribution grid. Most voltage violations happen in the evening, weekday afternoon, and midday for residential, slow commercial, and fast public EV charging stations, respectively. Furthermore, multiple enabling technologies have been demonstrated to reduce voltage violations, such as coordinated charging (reduced voltage violation by 50%), renewable charging (by 50%), and combinations of multiple types of customers (by 30%). This study presents some key insights into future power system operational scenarios with widespread EV charging stations that can be managed by multiple enabling technologies.

Open Access Status

This publication may be available as open access

Volume

36

Article Number

101216

Share

COinS
 

Link to publisher version (DOI)

http://dx.doi.org/10.1016/j.segan.2023.101216