Critical importance of RGB color space specificity for colorimetric bio/chemical sensing: A comprehensive study

Publication Name

Talanta

Abstract

The use of the RGB color model in colorimetric chemical sensing via imaging techniques is widely prevalent in the literature. However, the lack of specificity in the selection of RGB color space during capture and analysis presents a significant challenge in creating standardised methods for this field and possible discrepancies. In this study, we conducted a comprehensive comparison and contrast of a total of 68 RGB color spaces to evaluate their respective impacts on colorimetric bio/chemical sensing. We explore the impact of dynamic range, sensitivity, and limit of detection, and show that the lack of specificity in RGB color space selection can significantly impact colorimetric chemical sensing by 42–77%. We also explore the impact of underlying RGB comparisons and demonstrate a further 18.3% discrepancy between RGB color spaces. By emphasising the importance of proper RGB color space selection and handling, our findings contribute to a better understanding of this critical area and present valuable opportunities for future research. We further provide valuable insights for creating standardised methods in this field, which can be utilised to avoid discrepancies and ensure accurate and reliable analysis in colorimetric bio/chemical sensing.

Open Access Status

This publication may be available as open access

Volume

266

Article Number

124957

Share

COinS
 

Link to publisher version (DOI)

http://dx.doi.org/10.1016/j.talanta.2023.124957