RIS ID

101962

Publication Details

Moye, A. L., Porter, K. C., Cohen, S. B., Phan, T., Zyner, K. G., Sasaki, N., Lovrecz, G. O., Beck, J. L. & Bryan, T. M. (2015). Telomeric G-quadruplexes are a substrate and site of localization for human telomerase. Nature Communications, 6 (July), 7643-1 - 7643-12.

Abstract

It has been hypothesized that G-quadruplexes can sequester the 3′ end of the telomere and prevent it from being extended by telomerase. Here we purify and characterize stable, conformationally homogenous human telomeric G-quadruplexes, and demonstrate that human telomerase is able to extend parallel, intermolecular conformations in vitro. These G-quadruplexes align correctly with the RNA template of telomerase, demonstrating that at least partial G-quadruplex resolution is required. A highly purified preparation of human telomerase retains this extension ability, establishing that the core telomerase enzyme complex is sufficient for partial G-quadruplex resolution and extension. The parallel-specific G-quadruplex ligand N-methyl mesoporphyrin IX (NMM) causes an increase in telomeric G-quadruplexes, and we show that telomerase colocalizes with a subset of telomeric G-quadruplexes in vivo. The ability of telomerase to partially unwind, extend and localize to these structures implies that parallel telomeric G-quadruplexes may play an important biological role.

Share

COinS
 

Link to publisher version (DOI)

http://dx.doi.org/10.1038/ncomms8643