Remote sensing can locate and assess the changing abundance of hollow-bearing trees for wildlife in Australian native forests

RIS ID

100473

Publication Details

Owers, C. J., Kavanagh, R. P. & Bruce, E. (2014). Remote sensing can locate and assess the changing abundance of hollow-bearing trees for wildlife in Australian native forests. Wildlife Research, 41 (8), 703-716.

Abstract

Context Hollow-bearing trees are an important breeding and shelter resource for wildlife in Australian native forests and hollow availability can influence species abundance and diversity in forest ecosystems. A persistent problem for forest managers is the ability to locate and survey hollow-bearing trees with a high level of accuracy at low cost over large areas of forest. Aims The aim of this study was to determine whether remote-sensing techniques could identify key variables useful in classifying the likelihood of a tree to contain hollows suitable for wildlife. Methods The data were high-resolution, multispectral aerial imagery and light detection and ranging (Lidar). A ground-based survey of 194 trees, 96 Eucalyptus crebra and 98 E. chloroclada and E. blakelyi, were used to train and validate tree-senescence classification models. Key results We found that trees in the youngest stage of tree senescence, which had a very low probability of hollow occurrence, could be distinguished using multispectral aerial imagery from trees in the later stages of tree senescence, which had a high probability of hollow occurrence. Independently, the canopy-height model used to estimate crown foliage density demonstrated the potential of Lidar-derived structural parameters as predictors of senescence and the hollow-bearing status of individual trees. Conclusions This study demonstrated a 'proof of concept' that remotely sensed tree parameters are suitable predictor variables for the hollow-bearing status of an individual tree. Implications Distinguishing early stage senescence trees from later-stage senescence trees using remote sensing offers potential as an efficient, repeatable and cost-effective way to map the distribution and abundance of hollow-bearing trees across the landscape. Further development is required to automate this process across the landscape, particularly the delineation of tree crowns. Further improvements may be obtained using a combination of these remote-sensing techniques. This information has important applications in commercial forest inventory and in biodiversity monitoring programs.

Please refer to publisher version or contact your library.

Share

COinS
 

Link to publisher version (DOI)

http://dx.doi.org/10.1071/WR14168