RIS ID

92256

Publication Details

Marshall, D. L., Gryn'ova, G., Coote, M. L., Barker, P. J. & Blanksby, S. J. (2015). Experimental evidence for competitive N-O and O-C bond homolysis in gas-phase alkoxyamines. International Journal of Mass Spectrometry, 378 38-47.

Abstract

The extensive use of alkoxyamines in controlled radical polymerisation and polymer stabilisation is based on rapid cycling between the alkoxyamine (R1R2NO-R3) and a stable nitroxyl radical (R1R2NO•) via homolysis of the labile O-C bond. Competing homolysis of the alkoxyamine N-O bond has been predicted to occur for some substituents leading to production of aminyl and alkoxyl radicals. This intrinsic competition between the O-C and N-O bond homolysis processes has to this point been difficult to probe experimentally. Herein we examine the effect of local molecular structure on the competition between N-O and O-C bond cleavage in the gas phase by variable energy tandem mass spectrometry in a triple quadrupole mass spectrometer. A suite of cyclic alkoxyamines with remote carboxylic acid moieties (HOOC-R1R2NO-R3) were synthesised and subjected to negative ion electrospray ionisation to yield [M − H]− anions where the charge is remote from the alkoxyamine moiety. Collision-induced dissociation of these anions yield product ions resulting, almost exclusively, from homolysis of O-C and/or N-O bonds. The relative efficacy of N-O and O-C bond homolysis was examined for alkoxyamines incorporating different R3 substituents by varying the potential difference applied to the collision cell, and comparing dissociation thresholds of each product ion channel. For most R3 substituents, product ions from homolysis of the O-C bond are observed and product ions resulting from cleavage of the N-O bond are minor or absent. A limited number of examples were encountered however, where N-O homolysis is a competitive dissociation pathway because the O-C bond is stabilised by adjacent heteroatom(s) (e.g. R3 = CH2F). The dissociation threshold energies were compared for different alkoxyamine substituents (R3) and the relative ordering of these experimentally determined energies is shown to correlate with the bond dissociation free energies, calculated by ab initio methods. Understanding the structure-dependent relationship between these rival processes will assist in the design and selection of alkoxyamine motifs that selectively promote the desirable O-C homolysis pathway.

Grant Number

ARC/CE0561607, ARC/DP140101237

Share

COinS