In situ temporal detection of dopamine exocytosis from L-dopa-incubated MN9D cells using microelectrode array-integrated biochip

RIS ID

49691

Publication Details

Cui, H., Ye, J., Chen, Y., Chong, S., Liu, X., Lim, T. and Sheu, F. (2006). In situ temporal detection of dopamine exocytosis from L-dopa-incubated MN9D cells using microelectrode array-integrated biochip. Sensors and Actuators, B: Chemical, 115 (2), 634-641.

Abstract

Dopamine (DA) is an important neurotransmitter, playing a very important role in many neurological disorders. A microelectrode array-integrated biochip has been represented here as a convenient device for in situ temporal detection of DA exocytosis from dopaminergic cells. The biochip is silicon-based and a 5 ?? 5 array of Au disk microelectrodes is spaced on the 1 mm center of the silicon plate. MN9D, a mouse mesencephalic dopaminergic cell line, has been grown on the surface of the biochip chamber. DA exocytosis from the chip-grown MN9D cells was detected by using amperometry. With the amperometric detection limit of DA at the biochip microelectrodes ranging from 0.06 to 0.21 ??M (S/N = 3), the level of K+-induced DA exocytosis from MN9D cells was undetectable. In contrast, after MN9D cells were incubated with l-dopa, a DA precursor, K+-induced DA exocytosis was temporally detected by amperometry. The K+-induced DA release is concentration-dependent and appears to be saturated at the maximum extracellular DA concentration of 281 ?? 137 nM (mean ?? S.E.) for 8000 viable MN9D cells, when the extracellular K+ concentration increases to 35 mM. High-performance liquid chromatography demonstrates that the K+-stimulated exocytosis from l-dopa-incubated MN9D cells mainly contains DA, and the weight ratio of DA:NE:l-dopa: serotonin is 1.00:0.28:0.06:0.14. These results suggest that MN9D cell has a typical machinery system of a dopaminergic cell, including l-aromatic acid decarboxylase, vesicular monoamine transporter, voltage-sensitive Na+ channels, and voltage-sensitive calcium channels. ?? 2005 Elsevier B.V. All rights reserved.

Please refer to publisher version or contact your library.

Share

COinS
 

Link to publisher version (DOI)

http://dx.doi.org/10.1016/j.snb.2005.10.042