Proof-finding algorithms for classical and subclassical propositional logics

RIS ID

29686

Publication Details

Bunder, M. W. & Rizkalla, R. M. (2009). Proof-finding algorithms for classical and subclassical propositional logics. Notre Dame Journal of Formal Logic, 50 (3), 261-273.

Abstract

The formulas-as-types isomorphism tells us that every proof and theorem, in the intuitionistic implicational logic H → , corresponds to a lambda term or combinator and its type. The algorithms of Bunder very efficiently find a lambda term inhabitant, if any, of any given type of H → and of many of its subsystems. In most cases the search procedure has a simple bound based roughly on the length of the formula involved. Computer implementations of some of these procedures were done in Dekker. In this paper we extend these methods to full classical propositional logic as well as to its various subsystems. This extension has partly been implemented by Oostdijk.

Please refer to publisher version or contact your library.

Share

COinS
 

Link to publisher version (DOI)

http://dx.doi.org/10.1215/00294527-2009-011