A Dixmier-Douady theorem for Fell algebras

RIS ID

35042

Publication Details

An Huef, A., Kumjian, A. & Sims, A. (2011). A Dixmier-Douady theorem for Fell algebras. Journal of Functional Analysis, 260 (5), 1543-1581.

Abstract

We generalise the Dixmier–Douady classification of continuous-trace C*-algebras to Fell algebras. To do so, we show that C*-diagonals in Fell algebras are precisely abelian subalgebras with the extension property, and use this to prove that every Fell algebra is Morita equivalent to one containing a diagonal subalgebra. We then use the machinery of twisted groupoid C*-algebras and equivariant sheaf cohomology to define an analogue of the Dixmier–Douady invariant for Fell algebras, and to prove our classification theorem.

Please refer to publisher version or contact your library.

Share

COinS
 

Link to publisher version (DOI)

http://dx.doi.org/10.1016/j.jfa.2010.11.011