Muscarinic and nicotinic ACh receptor activation differentially mobilize Ca2+ in rat intracardiac ganglion neurons
RIS ID
106021
Abstract
The origin of intracellular Ca2+ concentration ([Ca 2+]i) transients stimulated by nicotinic (nAChR) and muscarinic (mAChR) receptor activation was investigated in fura-2-loaded neonatal rat intracardiac neurons. ACh evoked [Ca2+]i increases that were reduced to ∼60% of control in the presence of either atropine (1 μM) or mecamylamine (3 μM) and to <20% in the presence of both antagonists. Removal of external Ca2+ reduced ACh-induced responses to 58% of control, which was unchanged in the presence of mecamylamine but reduced to 5% of control by atropine. The nAChR-induced [Ca2+]i response was reduced to 50% by 10 μM ryanodine, whereas the mAChR-induced response was unaffected by ryanodine, suggesting that Ca2+ release from ryanodine-sensitive Ca2+ stores may only contribute to the nAChR-induced [Ca2+]i responses. Perforated-patch whole cell recording at -60 mV shows that the rise in [Ca2+]i is concomitant with slow outward currents on mAChR activation and with rapid inward currents after nAChR activation. In conclusion, different signaling pathways mediate the rise in [Ca 2+]i and membrane currents evoked by ACh binding to nicotinic and muscarinic receptors in rat intracardiac neurons.
Publication Details
Beker, F., Weber, M., Fink, R. H. A. & Adams, D. J. (2003). Muscarinic and nicotinic ACh receptor activation differentially mobilize Ca2+ in rat intracardiac ganglion neurons. Journal of Neurophysiology, 90 (3), 1956-1964.