A model-based fault detection and diagnosis strategy for HVAC Systems

RIS ID

39125

Publication Details

Zhou, Q., Wang, S. & Ma, Z. (2009). A model-based fault detection and diagnosis strategy for HVAC Systems. International Journal of Energy Research, 33 (10), 903-918.

Abstract

A strategy of fault detection and diagnosis (FDD) for HVAC sub-systems at the system level is presented in this paper. In the strategy, performance indices (PIs) are proposed to indicate the health condition of different sub-systems including cooling tower system, chiller system, secondary pump systems before heat exchangers, heat exchanger system and secondary pump system after heat exchangers. The regression models are used to estimate the PIs as benchmarks for comparison with monitored PIs. The online adaptive threshold determined by training data and monitored data is used to determine whether the PI residuals between the estimation and calculation or monitoring are in the normal working range. A dynamic simulation platform is used to simulate the faults of different sub-systems and generate data for training and validation. The proposed FDD strategy is validated using the simulation data and proven to be effective in the FDD of heating, ventilating and air-conditioning (HVAC) sub-systems.

Please refer to publisher version or contact your library.

Share

COinS
 

Link to publisher version (DOI)

http://dx.doi.org/10.1002/er.1530