RIS ID
54255
Abstract
Very large area, uniform TiO2@carbon composite nanofibers were easily prepared by thermal pyrolysis and oxidization of electrospun titanium(IV) isopropoxide/polyacrylonitrile (PAN) nanofibers in argon. The composite nanostructures exhibit the unique feature of having TiO2 nanocrystals encapsulated inside a porous carbon matrix. The unique orderly-bonded nanostructure, porous characteristics, and highly conductive carbon matrix favour excellent electrochemical performance of the TiO2@carbon nanofiber electrode. The TiO2@carbon hybrid nanofibers exhibited highly reversible capacity of 206 mAh g−1 up to 100 cycles at current density of 30 mA g−1 and excellent cycling stability, indicating that the composite is a promising anode candidate for Li-ion batteries.
Publication Details
Yang, Z., Du, G., Meng, Q., Guo, Z., Yu, X., Chen, Z., Guo, T. & Zeng, R. (2012). Synthesis of uniform TiO2@carbon composite nanofibers as anode for lithium ion batteries with enhanced electrochemical performance. Journal of Materials Chemistry, 22 (12), 5848-5854.